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DETACHMENT OF A BEAM GLUED TO A RIGID PLATE

UDC 539.3A. E. Alekseev and A. G. Demeshkin

The contact problem of detachment of an elastic beam glued to a rigid plate is considered. A mathe-
matical model is proposed and theoretical results are compared with experimental data.
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Introduction. The present paper addresses a contact problem of detachment of an elastic beam glued to
a rigid plate.

Various methods for solving contact problems of elastic plates and shells have been proposed (see, e.g.,
[1–3]). Below, we use the equations of elastic deformation of plates and shells [4, 5] obtained by expanding un-
known functions into series in terms of Legendre polynomials. A specific feature of this approach is that several
approximations are used for the same unknown functions. Arbitrary conditions for stresses, displacements, and
mixed conditions can be specified on the front surfaces without reducing the differential order of equations. This
allows one to adequately formulate the matching conditions at the boundary of exfoliation and gluing zones. These
equations were used to solve, for example, a plane contact problem for an elastic layer [6].

Equations of Deformation of an Elastic Beam. We consider the case of plane stresses. The stresses
are approximated by truncated series in Legendre polynomials Pk(ξ) (ξ = y/h):

2hσx = N + (3M/h)P1(ξ), σy = p0 + ∆pP1(ξ),

2hσxy = Q+ 2h∆qP1(ξ) + (2hq0 −Q)P2(ξ),

∆p = 0.5(p+ − p−), p0 = 0.5(p+ + p−),
(1)

∆q = 0.5(q+ − q−), q0 = 0.5(q+ + q−).

Here N =

h∫
−h

σx dy is the force, M =

h∫
−h

σxy dy is the moment, Q =

h∫
−h

σxy dy is the transverse shear force, and p±

and q± are the normal and shear stresses in the contact planes (ξ = ±1).
Displacements and strains are approximated by the truncated series

ux = u+ ψP1(ξ) + (u0 − u)P2(ξ) + (∆u− ψ)P3(ξ), uy = v + ∆vP1(ξ) + (v0 − v)P2(ξ),

ex =
du

dx
+
dψ

dx
P1(ξ), ey =

1
h

∆v +
3
h

(v0 − v)P1(ξ),

exy =
dv

dx
+

1
h

∆u+
3
h

(u0 − u)P1(ξ) +
5
h

(∆u− ψ)P2(ξ), (2)

∆u = 0.5(u+ − u−), u0 = 0.5(u+ + u−),

∆v = 0.5(v+ − v−), v0 = 0.5(v+ + v−).
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Here u =
1
2

1∫
−1

ux dξ and v =
1
2

1∫
−1

uy dξ are the displacements averaged over the thickness, ψ =
3
2

1∫
−1

uxξ dξ is the

angle of rotation of the normal to the mid-plane y = 0, and v± and u± are the normal and tangential displacements
at the contact surfaces (ξ = ±1), respectively.

The unknown functions that enter the coefficients in the polynomials in formulas (1) and (2) are determined
from the system of equations [7] that comprises:

— the equations of equilibrium

dN

dx
+ 2∆q = 0,

dM

dx
−Q+ 2hq0 = 0,

dQ

dx
+ 2∆p = 0; (3)

— the differential equations derived from Hooke’s law:

du

dx
=

N

2hE
− ν p0

E
,

dψ

dx
=

3M
2h2E

− ν ∆p
E
,

dv

dx
+

∆u
h

=
Q

2hµ
; (4)

— the algebraic equations derived from Hooke’s law:

u0 − u =
h

3µ
∆q, ∆u− ψ =

h

5µ

(
q0 −

Q

2h

)
,

∆v = h
p0

E
− ν N

2E
, v0 − v = h

∆p
3E
− ν M

2hE
.

(5)

Here E and µ are Young’s and shear moduli, respectively, and ν is Poisson’s ratio.
The system of ordinary differential equations (3) and (4) for the unknown functions N , M , Q, u, ψ, and v

has the sixth order.
Detachment of a Beam from a Rigid Plate. A beam of unit width, thickness 2h, and length l is glued

to a rigid plate. A force Q0 is applied to the edge x = 0. An increase in Q0 leads to detachment of the beam from
the plate. There are two zones: exfoliation zone (0 6 x 6 l∗) and zone where the beam remains glued to the plate
(l∗ < x 6 l) (Fig. 1).

The following boundary conditions are specified at the ends of the beam:

N = 0, M = 0, Q = −Q0 for x = 0; (6)

N = 0, M = 0, Q = 0 for x = l. (7)

The front surface ξ = 1 is stress-free:

q+ = 0, p+ = 0 for 0 6 x 6 l. (8)

At the front surface ξ = −1, the following conditions are formulated. In the exfoliation zone, we have

q− = 0, p− = 0 for 0 6 x 6 l∗ (9)

and in the zone where the beam remains glued to the plate (for brevity, we call it the gluing zone):

u− = 0, v− = 0 for l∗ < x 6 l. (10)
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Moreover, we assume that the normal stresses satisfy the inequality p− < σ0 at each point in the gluing zone (σ0 is
a certain positive quantity that characterizes the strength properties of the gluing layer). If the normal stresses at
a certain point reaches σ0, exfoliation occurs at this point. Thus, we obtain the equality

p− = σ0 for x = l∗. (11)

The boundary-value problem for system (1)–(5) subject to the boundary conditions (6)–(10) is difficult
to solve. To simplify the formulation of the initial problem, we make the following assumptions. The unknown
functions u and N do not play the decisive role and can be ignored. Moreover, we set ν∆p/E = νM/(2hE) = 0 in
Eqs. (4) and (5).

With these assumptions in mind, we reduce system (1)–(5) to the system

dM

dx
−Q+ 2hq0 = 0,

dQ

dx
+ 2∆p = 0; (12)

dψ

dx
=

3M
2h2E

,
dv

dx
+

∆u
h

=
Q

2hµ
; (13)

u0 =
h

3µ
∆q, ∆u− ψ =

h

5µ

(
q0 −

Q

2h

)
,

∆v = h
p0

E
, v0 − v = h

∆p
3E

.

(14)

We consider the solution of the problem in the exfoliation zone (0 6 x 6 l∗). Equations (12)–(14) are
supplemented by the boundary conditions (8) and (9). The solution of the resulting system with the boundary
conditions (6) has the form

Q = −Q0, M = −xQ0, ψ = − 3
4h2

Q0

E
x2 + Ψ,

v =
1

4h3

Q0

E
x3 − 6(1 + ν)

5h
Q0

E
x− x

h
Ψ + V.

(15)

Here Ψ and V are unknown constants.
In the gluing zone (l∗ < x 6 l), Eqs. (12)–(14) should be supplemented by the boundary conditions (8)

and (10), which can be written as

q0 + ∆q = 0, p0 + ∆p = 0, u0 −∆u = 0, v0 −∆v = 0. (16)

The set of equations (14) and (16) can be considered as a linear system of algebraic equations for the unknown
functions ∆u, u0, ∆v, v0, ∆p, p0, ∆q, and q0, whose solution has the form

q0 = −∆q = −15µ
8h

ψ +
3

16h
Q, p0 = −∆p =

3E
4h

v,

u0 = ∆u =
5
8
ψ − 1

16h
Q, v0 = ∆v =

3
4
v.

(17)

Substituting (17) into Eqs. (12) and (13), we obtain the fourth-order system of ordinary differential equations

dM

dx
= h

15µ
4h

ψ +
5
8
Q,

dQ

dx
=

3E
2h

v,

dψ

dx
=

3M
2h2E

,
dv

dx
= − 5

8h
ψ +

9
16hµ

Q.

(18)

We denote the normal contact stress in the gluing zone by p. From (17), we obtain the normal contact stresses

p = 3Ev/(4h). (19)

The characteristic equation of system (18) is a biquadratic equation that has four complex roots. The
solution involves four constants. Let l/h � 1. In this case, we assume that the boundary conditions (7) are
specified at infinity. After these conditions are satisfied, the solution of system (18) becomes

ψ = (C1 cos (βx/h) + C2 sin (βx/h)) exp (−αx/h). (20)
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Here C1 and C2 are unknown constants and α and β are determined by the formulas

α = 0.5
√
c+ d, β = 0.5

√
−c+ d,

c =
9
16

(10
k

+
3k
2

)
, d =

3
2

√
10, k =

E

µ
= 2(1 + ν).

The unknown functions M , Q, and v have the form similar to expression (20).
Solution (15) contains two unknown constants Ψ and V for the exfoliation zone and two unknown con-

stants C1 and C2 for the gluing zone. These unknown constants are determined from the matching conditions for
solutions (15) and (12) at the point x = l∗, which can be written as

[M ] = 0, [Q] = 0, [ψ] = 0, [v] = 0 for x = l∗. (21)

Here [ · ] denotes a discontinuity of the function.
The unknown boundary of the exfoliation zone l∗ is determined from conditions (11) and (19). The con-

stants C1 and C2 are calculated from the first two equalities of (21). Once these are found, the constants Ψ and V
are determined from the remaining relations. Equalities (11) and (19) yield an expression for l∗.

Without derivation, we write the expressions

Q0 = 2hσ0A/(5η/8 +B); (22)

A =
15
8k

+
√

10
4
, B =

√
10
6

√
9
8k

(
5 +

3
4
k2
)

+
3
2

√
10;

V0 = (Q0/E)(4η3 + a2η
2 + a1η + a0); (23)

a0 =
B

3A
, a1 =

5
18k

, a2 =
5

8B

(9k
5

+
16√
10

+
5

24A

)
,

where η = l∗/(2h) is a dimensionless parameter determining the boundary of the exfoliation zone.
Formula (22) determines the relation between the applied load Q0 and the size of the exfoliation zone l∗,

and formula (23) determines the relation between the deflection of the beam end V0 and the size of the exfoliation
zone l∗.

Experiments. To verify the above-proposed mathematical model of detachment of an elastic beam from a
rigid foundation, we performed experiments.

Specimens made of Plexiglas, glass-reinforced plastic, and Duralumin 3 mm thick, 10 mm wide, and 300 mm
long were glued to a rigid plate with epoxy resin. The plate was made of transparent Plexiglas, which allowed us
to determine the length of the exfoliation zone of the specimen with reasonable accuracy. Experimental conditions
(specimen size, roughness of the surfaces to be glued, pressure, and gluing time) were identical. For each material,
the experiment was performed three or more times.

Figure 1 shows schematically the experimental diagram. According to the loading conditions and charac-
teristics measured, the experiments are divided into two types. In the first case, the force Q0 was applied to the
specimen end (“soft” loading). The force Q0 was measured by a dynamometer and the corresponding length of
the exfoliation zone l∗ was measured visually (the plate was made of transparent Plexiglas). The boundary of the
exfoliation zone was distinctly seen. The transparent epoxy-resin gluing layer became dimmed and was covered by
fine cracks. In the second case, the end of the specimen was given a deflection V0 (“stiff” loading). The deflection
V0 was measured with the help of a clock-type indicator and the value of l∗ was determined visually.

At the initial stage of “soft” loading, the following is observed. The load increases to a certain critical
value Q∗, and exfoliation does not occur (l∗ = 0). At Q0 = Q∗, the load decreases abruptly and the length of the
exfoliation zone increases rapidly. Because of the process transiency, we failed to record the dependence between
Q0 and l∗. To determine this dependence, we used the following procedure.

We chose a sequence of lengths 0 < li < l∗ for which the specimen was not glued in the interval from 0 to li,
i.e., the exfoliation zone was modeled artificially. Then the specimen was loaded and the critical load Qi∗ that made
exfoliation continue was determined. Setting Q0 = Qi∗ and l∗ = li, we obtain a dependence between Q0 and l∗. In
the experiments, the values of li were equal to 20, 30, and 50 mm.
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For the “stiff” loading, a monotonic dependence between l∗ and specified deflection at the beam end V0 was
observed for each specimen. The dimensions of the exfoliation zone increased with increasing deflection.

It should be noted that, for specimens made of the same material, the scatter of experimental values of the
exfoliation-zone length becomes more pronounced with an increase in the deflection V0.

Comparison of Theoretical and Experimental Results. To verify whether the mathematical model
proposed above describes adequately the detachment of a beam glued to a rigid plate, we compare theoretical and
experimental results.

We consider the case of “soft” loading. Taking into account the specimen width b, we write formula (22) as

Q0 =
Q′0

1 + γl∗
, Q′0 = 2hbσ0

A

B
, γ =

5
16hB

. (24)

Formula (24) contains a physical constant σ0, which characterizes the strength properties of the gluing layer. This
quantity depends on the shape and roughness of contacting surfaces, properties of the glue, characteristics of the
bodies in contact, etc. It is, therefore, expedient to determine this quantity directly from experimental data. For
l∗ = 0, we have Q0 = Q∗ (Q∗ is the critical load). At the same time, it follows from formula (24) that Q0 = Q′0 for
l∗ = 0. Setting Q′0 = Q∗, we obtain

σ0 = BQ∗/(2hbA). (25)

Since the experimental values of Q∗ differ for different specimens (scatter is smaller than 12%), the averaged value
is used in the calculations and formula (25). We obtain Q∗ = 9.7 kg for aluminum, Q∗ = 6.7 kg for glass-fiber
plastic, and Q∗ = 4 kg for Plexiglas. In the calculations, Young’s modulus E and Poisson’s ratio ν were E = 7 · 104

MPa and ν = 0.27 for aluminum, E = 2.8 · 104 MPa and ν = 0.25 for glass-fiber plastic, and E = 0.3 · 104 MPa and
ν = 0.35 for Plexiglas.
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Fig. 3

Figure 2a–c shows the theoretical and experimental dependences Q0(l∗) for aluminum, glass-fiber plastic,
and Plexiglas, respectively. The solid curves refer to formula (24) and the points are experimental data. One can
see that the theoretical and experimental results are in good qualitative agreement; for large values of l∗, the results
also agree quantitatively.

In the case of “stiff” loading, we consider the dependence of the deflection of the specimen end V0 (see Fig. 1)
on the length of the exfoliation zone l∗. We write formula (23) as

V0 =
Q∗
bE

A3l
3
∗ +A2l

2
∗ +A1l∗ + a0

1 + γl∗
,

A1 =
a1

2h
, A2 =

a2

(2h)2
, A3 =

4
(2h)3

.

(26)

Figure 3a–c shows the theoretical and experimental dependences V0(l∗) for aluminum, glass-fiber plastic, and
Plexiglas, respectively. The solid curves refer to formula (26) and the points are experimental data. The value of
Q∗ was set identical to the case of “soft” loading. The dependences are in good qualitative agreement. Quantitative
agreement between theoretical and experimental data is observed for small deflections.

A comparison of theoretical and experimental results shows that the mathematical model proposed ade-
quately describes the detachment of a beam glued to a rigid plate.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 01-01-00873
and 00-15-96180).
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